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Abstract 

Background:  Prediction and classification algorithms are commonly used in clinical research for identifying patients 
susceptible to clinical conditions such as diabetes, colon cancer, and Alzheimer’s disease. Developing accurate pre-
diction and classification methods benefits personalized medicine. Building an excellent predictive model involves 
selecting the features that are most significantly associated with the outcome. These features can include several 
biological and demographic characteristics, such as genomic biomarkers and health history. Such variable selection 
becomes challenging when the number of potential predictors is large. Bayesian shrinkage models have emerged as 
popular and flexible methods of variable selection in regression settings. This work discusses variable selection with 
three shrinkage priors and illustrates its application to clinical data such as Pima Indians Diabetes, Colon cancer, ADNI, 
and OASIS Alzheimer’s real-world data.

Methods:  A unified Bayesian hierarchical framework that implements and compares shrinkage priors in binary and 
multinomial logistic regression models is presented. The key feature is the representation of the likelihood by a Polya-
Gamma data augmentation, which admits a natural integration with a family of shrinkage priors, specifically focusing 
on Horseshoe, Dirichlet Laplace, and Double Pareto priors. Extensive simulation studies are conducted to assess the 
performances under different data dimensions and parameter settings. Measures of accuracy, AUC, brier score, L1 
error, cross-entropy, and ROC surface plots are used as evaluation criteria comparing the priors with frequentist meth-
ods as Lasso, Elastic-Net, and Ridge regression.

Results:  All three priors can be used for robust prediction on significant metrics, irrespective of their categorical 
response model choices. Simulation studies could achieve the mean prediction accuracy of 91.6% (95% CI: 88.5, 94.7) 
and 76.5% (95% CI: 69.3, 83.8) for logistic regression and multinomial logistic models, respectively. The model can 
identify significant variables for disease risk prediction and is computationally efficient.

Conclusions:  The models are robust enough to conduct both variable selection and prediction because of their high 
shrinkage properties and applicability to a broad range of classification problems.

Keywords:  Shrinkage priors, Logistic regression, Horseshoe, Dirichlet Laplace, MCMC, Polya-Gamma, Multinomial, 
ADNI, Pima, Data augmentation
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Introduction
Recent innovations and availability of structured elec-
tronic health records (EHRs), and multisite longitudi-
nal studies, high-throughput sequencing (HTS) [1] data 
have made patient characteristics, genomics information 
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accessible for statistical prediction analysis and clini-
cal research. Medical decisions are modified upon the 
identification of essential covariates for a specific clinical 
outcome. Treatment recommendations are also age, pop-
ulation, and comorbidity specific, with HTS bringing a 
paradigm shift in large-scale personalized medicine. For 
example, in diabetes prediction, various biological and 
clinical factors such as sex, age, obesity are responsible 
for predicting the future risk of the disease. In oncology, 
for instance, in colorectal cancer [2], breast cancer [3], 
non-small cell lung cancer(NSCLS) prognostic [4], and 
predictive genes such as human epidermal growth factor 
receptor 2 (HER2), BRAF, KRAS are not only essential 
for early detection but also therapy selection, subgroup 
stratification, and controlled monitoring of the disease. 
In Alzheimer’s disease (AD), a combination of traditional 
risk factors including age, education, hypertension, obe-
sity, cognitive test scores, cardiovascular disease [5] along 
with testing of ApoE4 gene can be informative in identi-
fying if a patient is vulnerable to the non-curable disease 
or any other forms of dementia.

A clinical prediction or classification model, followed 
by a variable selection strategy, plays a vital role in 
designing preventive measures from adverse outcomes.

Penalized regression
Variable selection methods can mitigate noise imposed 
by irrelevant variables in the data. Most of these methods 
are frequentist approaches such as Lasso [6], Elastic-Net 
[7] that uses L1 or L2 penalty to shrink the coefficients 
of irrelevant variables. Bayesian regression methods that 
incorporates shrinkage properties as prior information 
is a reasonable alternative approach, and is the ultimate 
focus of this research work.

Public health researchers often encounters prediction 
problems with categorical responses. Depending on the 
clinical features the primary outcome needs to be pre-
dicted, such as the classification of a Covid-19 patient as 
“discharged” or “died” or “remained in hospital” with indi-
vidual-patient level data [8]. When the response variable 
is binary, logistic regression (LR) models enable assessing 
the association between an independent variable(s) and 
the response variable. When the response variable has 
more than two categories, generalizations of the logistic 
model, such as multinomial logistic regression (MLR) 
models, are common. The above example provides a bet-
ter understanding of categorical response models and 
their contribution as a natural and attractive approach 
in a diverse array of applications, ranging from spam 
detection, credit card fraud to predicting Alzheimer’s 
stage and tumor malignancy. The categorical response 
models’ primary goal is to infer relationships between a 
categorical response and a set of explanatory variables. 

As in any form of regression technique, this is critical to 
understanding the causal dynamics of a complex system 
and making accurate predictions on future data. Depend-
ing on a specific problem, the explanatory variables or 
predictors can be of the form of demographic profiles, 
socio-economic data, or complex biomolecular entities. 
Modeling becomes particularly challenging when the 
number of such predictors grows large, a common fea-
ture in genomics. Traditionally, frequentist likelihood-
based methods have been using penalized regression 
techniques to address this “curse of dimensionality” 
and  to deal with data having a considerable number of 
predictors in linear and multicategory response regres-
sion. These methods briefly add penalty terms to the 
negative log-likelihood function and then optimize this 
penalized likelihood for parameter inference. The penali-
zation leads to a desired “shrinking” behavior of the esti-
mates. Specifically, it pulls the small coefficients towards 
zero while minimally affecting the large coefficients, thus 
selecting only the most relevant variables. For a LR set 
up, the objective function that needs to be minimized is 
of the form

Here, y=(y1,y2,...,yn) is an n- dimensional vector rep-
resenting the outcome variable; xi=(xi1,xi2,…,xip) are the 
covariates with xij are the observed values on the p pre-
dictors and (β1,β2,...,βp)T is a p-dimensional parameter 
vector of regression coefficients. λ is the penalty param-
eter which modulates the amount of shrinkage. Large val-
ues of λ lead to more shrinkage, while λ=0 leads to the 
simple logistic likelihood without shrinkage. The general-
ized objective function for multiple categories is

Different values of r lead to various penalization tech-
niques. For example, r=1 results in the well-known Least 
Absolute Shrinkage and Selection Operator (Lasso) [6] 
solution and r=2 results in the Ridge regression solution 
[9]. Elastic-Net [7] is another method that is a convex 
combination of Lasso and Ridge.

Shrinkage priors
Bayesian variable selection models form a natural coun-
terpart to penalization, with some specialized priors 
assuming the penalty terms’ role. Some notable works in 
this area include [6, 10–18] among many. A comprehen-
sive overview of shrinkage priors for data applications is 
present in [19]. The historical development of shrinkage 
priors can be traced back to the spike and slab approach 
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proposed in [20]. It is a hierarchical mixture model that 
essentially uses a latent binary indicator to differentiate 
between the large and small regression coefficients. It 
does so by assigning Gaussian priors with high and low 
variances to the coefficients, conditional on these indica-
tors. The resultant marginal prior for a coefficient takes 
on a shape with a “spike” at 0 and a relatively flat “slab” at 
non-zero regions, lending the model its name. Stochastic 
search variable selection (SSVS) [21] is used for identify-
ing a subset of significant covariates with a hierarchical 
normal mixture model structure, similar to the spike and 
slab prior. However, it uses continuous Gaussian distribu-
tion to include and exclude variables and lower variance, 
respectively. The spike-and slab prior has a bi-separation 
effect on the model coefficients, thus bringing a compu-
tational complexity of 2p. SSVS is computationally inten-
sive and cannot tackle a large set of predictors. Inclusions 
of non-conjugate and conjugate priors are detailed in 
this extension of the work [22]. A related class of vari-
able selection (VS) models put the positive prior mass at 
0. Inference in these models usually relies on Reversible 
Jump sampling techniques [23]. Though these models 
have the nice property of explicitly reducing coefficients 
to zero, they typically incur high computational costs 
and exhibit poor mixing. These issues necessitated using 
a computationally efficient class of priors, which allowed 
sufficient shrinkage in high dimensions. The focus solely 
is on such priors for this article. These priors are called 
global-local(GL) shrinkage priors [24]. Denoting the 
parameter set as β=(β1,...,βp)T, the GL framework can be 
written hierarchically as follows
βj∼N(0,λjτ) λj∼f(.) and τ∼g(.).
The global parameter τ controls the overall shrink-

age of all the coefficients towards zero while the local 
parameters λ=(λ1,...,λp) modulate the coefficient-specific 
shrinkage. It is desired that the distribution of the local 
parameter f(.) has heavy tails and the distribution of the 
global parameter g(.) has substantial mass at point zero. 
The Normal-Gamma prior [25], the Dirichlet Laplace 
(DL) prior [18], Horseshoe prior [26], and the Dou-
ble Pareto (DP) prior [17] are some of the GL priors. A 
review and comparison of shrinkage methods for VS are 
detailed in [27]. High-dimensional statistical modelling 
with Bayesian shrinkage prior method has been extended 
in several arenas such as longitudinal binary data with 
informative missingness [28], and for joint modelling 
of clustered mixed outcomes with uniform shrinkage 
prior [29]. The second piece of our proposed approach 
focuses on a convenient data augmentation representa-
tion of the logistic regression likelihood. Two data aug-
mentation algorithms that have gained popularity for 
binary responses which  are for the probit regression 
model that uses truncated normal random variables [30] 

and another for  the logistic regression that uses Polya-
Gamma (PG) random variables [31]. Here we focus on 
the latter scheme.

In the following sections, the PG Data Augmentation 
is described under LR and MLR models. Next, the data-
augmented likelihood framework’s connection to the 
Horseshoe, DL, and DP priors is presented, embedding 
them in a fully Bayesian hierarchical model. Performance 
metrics evaluate the simulation results with different 
sample sizes, covariate dimensions, and parameter set-
tings with several data applications. The limitations and 
contributions are in the Discussion section where the 
article is concluded with future research directions.

Bayesian binary regression and polya‑Gamma data 
augmentation
Consider the binary logistic regression model where 
Y1,Y2,...,Yn are i.i.d. Bernoulli random variables with vari-
ables 

{

xi ∈ R
p
}n

i=1
 as the covariates and β ∈ R

p denotes 
the unknown regression coefficients. The corresponding 
likelihood is given by

In the context of the Bayesian analysis, the posterior of β 
given the data is given by π(β | Y ) ∝ π(β)

∏n
i=1

exp(xTi βyi)

1+exp(xTi β)
 , 

where π(β) denotes the prior distribution for β. Unfortu-
nately, the above posterior becomes intractable due to the 
presence of the term (1+ exp(xTi β)) in its denominator 
[32]. Therefore, posterior sampling in this setup tradition-
ally relied on the Metropolis Hastings (MH) algorithm. As 
an alternative, the Data Augmentation (DA) algorithm uti-
lizes the latent variables to circumvent the difficulty. 
Before introducing to the specific Polya-Gamma DA 
scheme that we used in this article, we provide the general 
structure of a DA algorithm. Suppose, we need to sample a 
parameter of interest θ from an intractable density π(θ). 
The technique requires to design a suitable joint density 
π(θ,W) in such a way that it satisfies the following two cri-
teria ; firstly, 

∫

π(θ ,W )dW = π(θ) and secondly, the cor-
responding conditional distributions, π(θ∣W) and π(W∣θ) 
are possible to sample from [33, 34]. In the context of the 
Bayesian analysis, π(θ) typically refers to a posterior den-
sity for a parameter of interest θ. A major challenge for 
designing a DA is to construct an appropriate choice for 
π(θ,W) (see [30], [31]). A commonly used strategy is to 
build a conditional distribution π(W∣θ) so that π(θ,W)=π(
W∣θ)π(θ) fulfills the requirements. The latent variable W is 
often termed as the augmented random variable. In the 
current context, our parameter of interest is β with the 
posterior density π(β∣Y) while we make use of the DA 
technique designed in [31] where the authors develops and 
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utilizes the Polya-Gamma (PG) distribution as the choice 
for the augmented random variable. As we will require in 
the later sections, we include the probability density func-
tion of the Polya-Gamma distribution (denoted by PG(1,c)) 
[31], as following

To deal with the intractability in Eq. 3, the DA scheme 
augments independent latent variables, {Wi}ni=1 where 
Wi ∼ PG(1, |xTi β|) . {Wi}ni=1 are also assumed to be inde-
pendent of {Yi}ni=1 for i=1,…n. Then, the joint posterior 
π(β , {Wi}ni=1 | {Yi}ni=1) satisfies the two criteria related to 
a generic DA algorithm that are mentioned above. The 
integrability criterion trivially holds whereas the the ran-
dom variables W1,…,Wn given {Yi}ni=1,β are independent 
and follows PG distribution [31]. The posterior condi-
tional for β | {Yi}ni=1, {Wi}ni=1 becomes to be the multi-
variate normal if the multivariate normal prior is used 
for β [31]. The appearance of normal distribution as a 
posterior for β is a key feature which provides a way to 
utilize more nontrivial priors for β without much diffi-
culty. Specifically, in this manuscript we use the Global-
Local priors that we discuss in details in the next section. 
As mentioned earlier, Bayesian regression for binary 
responses has been recognized as a hard problem due to 
the likelihood’s unwieldy form. There have been several 
efforts towards an improved version of the DA algorithm 
[30] for probit regression. Some notable works include 
[35] and [36]. However, these algorithms are more 
imprecise versions of [30] making it significantly diffi-
cult with multiple layers of latent variables and restrict-
ing its usage. In contrast, the DA algorithm by [31] is 
free of these problems and computationally much less 
cumbersome.

Logistic regression model with hierarchical prior structures
In this subsection, we include the details of each of the 
three priors distributions along with the corresponding 
posterior distributions. The original form of the horse-
shoe prior [37] is represented as

Another computationally feasible hierarchical repre-
sentation of the Horseshoe prior [14] that is used here is

Here, the variance covariance matrix Σ of the dis-
tribution of β is a diagonal matrix with elements 
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(Λ1τ2,…Λpτ2). From Eqs. 3,(4) and the above hierarchi-
cal prior structure (6), the full posterior distribution is 
given by:

where, h(wi) is defined in Eq. 4. The conditional dis-
tributions required for the analysis are as follows:

The conditional density of β given y, w is

where, WD and Σ are diagonal matrices where the ele-
ments are (w1,w2,...,wn), (�2

1τ
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pτ
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and, y∗ =
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y1 − 1
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1
2

)

.
In high-dimensional scenarios where sam-

pling of β can be difficult for p>n case, fast sam-
pling technique with Gaussian scale-mixture 
priors [38] is used where the mean and vari-
ance of a Gaussian distribution is in the respective 
form: Np(µ, �̂),µ = �̂ATα, �̂ = (ATA+ D−1)−1 
D∈Rp×p,A∈Rn×p,α∈Rn×1 The algorithm involves sam-
pling u∼N(0,D), and δ∼N(0,In); with V=Au+δ getting 
the inverse of (ADAT+In)w=(α−v), and finally obtain-
ing θ=u+DATw,θ∼N(μ,Σ). The conditional density of 
wi given xi,β is

The conditional density of the hyper-parameters are 
as follows

Here, all the posterior densities are in the closed form, 
and follow simple probability  densities such as Normal, 
Polya-Gamma and Inverse-Gamma making sampling 
from them trivial. The hierarchical structure of the Dir-
ichlet Laplace prior [18] is

The conditional posterior distributions remain same 
for β∣yi and wi∣β is similar to that of Eqs. 8 and 9.
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The conditional density of the hyper-parameters as 
obtained similar to Theorem 2.2 in [18] are as follows:

To sample π(φ∣βj) sample Tj∼GIG(a−1,1,2|βj|), set 
φj = Tj

T ,T =
∑p

j=1 Tj . where GIG(a,b,c) is the Gen-
eralized Inverse Gaussian distribution with density 
f (x; a, b, c) ∝ x(c−1)e

−1
2 (ax+ b

x ).
The hierarchical structure of Double Pareto prior[30] is

Again, the conditional densities of β∣yi and wi∣β remains 
same as (8) and (9). Here Σ=Dτ is a diagonal matrix with 
elements (τ1,τ2,...,τp). The conditional density of rest of 
the hyper-parameters are as follows:

Extending hierarchical models and differential shrinkage
The strength of our methods are in no way limited to a 
common shrinkage prior across covariates. In fact, this 
could be applied to several different variant models which 
allow for borrowing strength across multiple responses 
and different (in some cases, user-defined) levels of spar-
sity among groups of covariates. In particular, this could 
be used for models where we can choose not to shrink 
some covariates (for instance, some demographic covari-
ates) in contrast to the genomic covariates.

In terms of estimation procedures, the hierarchi-
cal structure of the models would allow the form of the 
posterior conditional of β would remain the same in 
the model variants. Only the diagonal weight matrices 
appearing in the posterior means and variances would 
have some differential allocation of λs and constant vari-
ances depending on which variable that we choose to 
shrink. Similarly, the posterior sampling of the shrinkage 
hyper-parameters would be a subset. Details of the deri-
vation are omitted since these are straight forward.

Bayesian multinomial logistic regression 
and polya‑Gamma data augmentation
This is the extension of the binary regression, where 
the outcome variable has more than two classes. Let 
Yi, i=1,2,…,n be a categorical random variable with 
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k categories, where k≥2. The probability for the kth 
category is pik=P(Yi=k∣xi), where 

∑K
k=1 pik = 1 . The 

multinomial logistic regression (MLR) model is 
given as

Here, βk are the coefficients associated with k-th cat-
egory, and K is the baseline category with its coefficient 
βK constrained to zero. The Polya-Gamma data aug-
mentation approach can be extended for multi-category 
response variables. Here, βk is updated conditional on the 
remaining β−k=(β1,β2,…,βk−1,βk+1,…,βK). The full condi-
tional for βk given y and βj≠k can be expressed as a likeli-
hood of the Bernoulli distribution.
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βk’s based on the binary indicator variable I(yi=k). The 
above Eq. 17 after including PG data augmentation and 
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ors was calculated similarly to LR. Considering 
N (0,�2

t τ
2), t = 1, 2, . . . , p , for β1,β2,…,βK−1, the condi-

tional density for βk and wik are given as

where Σ0 = diag
(
Λ2

t
�2
)
,Wk = diag(wik ), y

∗

k
=

I(yi=k)−0.5

wik

+Mik
.

(15)
P(Yi = k ∣ xi) = pik =

e
xT
i
�k

1+
∑K−1

j=1
e
xT
i
�j
, k = 1, 2,…K − 1

P(Yi = K ∣ xi) = piK =
1

1+
∑K−1

j=1
e
xT
i
�j
.

(16)f (�k ∣ y, �−k ) ∝ f (�k )Π
n
i=1

p
I(yi=k)

ik
(1 − pik )

1−I(yi=k)

(17)f (βk | y,β−k) ∝ f (βk)�
n
i=1

(eψik )I(yi=k)

1+eψik

(18)
f (�k ∣ y, �−k ) = Πn

i=1

(e�ik )I(yi=k)

1+e�ik
(1 + e�ik )e−�ik∕2−�

2

ik
wik∕2

h(wik )e
−

1

2
(�Tk Σ

−1

k
�k ).

(19)
�k ∼ N (�k ,Σk ), �k = Σk

(
Σ0 + XTWky

∗

k

)
, Σk =

(
Σ0 + XTWkX

)−1

wik ∼ PG(1,�ik ).
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The conditional density of the hyper-parameters in 
the case of horseshoe prior is

The conditional density of the hyper-parameters in 
case of DL prior is

To sample π(φ∣βk) sample Ttk∼GIG(a−1,1,2|βtk|), set 
φtk = Ttk

T ,T =
∑p

t=1 Ttk . where GIG(a,b,c) is the Gen-
eralized Inverse Gaussian distribution with density 
f (x; a, b, c) ∝ x(c−1)e

−1
2 (ax+ b

x ).
The conditional densities of the hyper-parameters are 

as follows:

Here, βk=(β1k,β2k,…,βpk),t=1,2,…,p.

Simulation and results
Data was simulated from the logistic regression model 
under various settings of sample size (n), dimensions (p), 
and effect sizes β=(β1,β2,…,βp). The continuous covari-
ates are simulated with mean m and sd=1. A total of 100 
data sets were simulated for each of the conditions. All 
computations are carried out in RStudio [39]. The length 
of the Markov Chain Monte Carlo (MCMC) simulation 
is 10000, and 6000 iterations are discarded in the burn-in 
step. The value of parameter a in DL prior is chosen as 
0.8 for optimal results and convergence.

Post‑processing of mCMC samples
After model fitting variable selection was implemented 
by computing their posterior credible intervals. Posterior 
credible intervals can be readily obtained from a Bayes-
ian framework via MCMC samples, and can provide 
direct uncertainty measures irrespective of model com-
plexity. Specifically, these intervals are constructed by 
the quantiles of the MCMC samples of the parameters 
and estimate the probability intervals of the true poste-
rior distribution. The variables are declared to be signifi-
cant if and only if these posterior credible interval do not 

(20)

π(�2
jk | γjk ,βjk , ξ ,�2

jk) ∼ IG

(

1,
1
γjk

+ β2
jk

2τ 2

)

π(γjk | �2
jk ,βjk , ξ , τ

2) ∼ IG

(

1, 1+ 1

�2
jk

)

π(τ 2 | γjk ,βjk , ξ ,�2
jk) ∼ IG

(

p+1

2
,
1

ξ
+

∑p
t=1

β2
jk

2�2
jk

)

π
(

ξ | τ 2
)

∼ IG
(

1, 1+ 1

τ 2

)

(21)
π(ψ | φ, τ ,βk) ∼ IG

(

φtkτ
|βtk | , 1

)

π(τ | φ,βk) ∼ GIG
(

pa− p, 1, 2
∑p

j=1
|βtk |
φtk

)

.

(22)
π
(

τtk | βk ,�, y
)

∼ GIG
(

1
2 ,�

2
tk ,β

2
tk

)

π
(

� | βk , y
)

∼ Gamma(ζ + 1, η + |βtk |).

include zero. Thus, it will be a binary vector of the vari-
ables that were selected from estimation. These binary 
estimates were then matched against the simulation truth 
to compute some performance metrics.

Other than performance measures, these cred-
ible interval techniques would also provide a convenient 
measure of uncertainty, in case we need to use them. The 
varying sizes and noise content of datasets gets reflected 
in the varying lengths of the estimated prediction inter-
vals that in turn allows us to place varying degrees of 
confidence in our inferred relationships. This could also 
inform us about the desired adequacy of sample size and 
number of variables for future studies. This can be readily 
obtained from MCMC samples unlike other traditional 
methods such as Lasso.

Performance measures
Based on the binary estimates, sensitivity, specificity and 
overall accuracy were computed for variable selection. In 
addition, two continuous error measures, MSE and Brier 
scores,were computed. The Brier Score (BS) is defined as 
BS = 1

N

∑N
i=1 (Pi − Yi) ; here, Pi is the probability of pre-

diction and Yi is the actual outcome at that instance. The 
best score achievable is 0 and the worst is 1; The Mean 
Squared Error (MSE) is given by 1p

∑p
i=1(βi − β̂i)

2;

Prediction
A prediction module was also added that would assess 
how the model fares in classifying the responses. For this, 
a cross-validation approach and divided each simulated 
data set into training and test data on a 80-20 allocation 
percentage. The following measures were used for assess-
ing the quality of our prediction. Accuracy (the propor-
tion of correctly classified responses in the test dataset); 
Sensitivity (proportion of true positives); Specificity (pro-
portion of true negatives); AUC (Area Under the Receiver 
Operating Characteristic (ROC) Curve).

Simulation scenarios and tables
Table 1 summarizes the simulation results and simulation 
settings for prediction and VS and Table  2 records the 
same for MLR.

Each measure has three rows corresponding to the three 
priors. Figures  1 and 2 represents the VS and prediction 
performance across the simulation scenarios for LR and 
MLR, respectively. The two simulation scenarios (BS8 and 
BS9) reflect the extension discussed in the earlier section– 
namely, the differential shrinkage option. In BS8, some 
demographic variables (gender, age, weight, height) as well 
as their interactions were included with the remaining 
covariates. The coefficients for the demographic variables 
and their interactions were not penalized, i.e. given non-
shrinkage priors. Another simulation scenario (BS9) was 



Page 7 of 19Bhattacharyya et al. BMC Medical Research Methodology          (2022) 22:126 	

Ta
bl

e 
1 

Pr
ed

ic
tio

n 
& 

Va
ria

bl
e 

Se
le

ct
io

n 
Pe

rf
or

m
an

ce
 fo

r L
R 

w
ith

 S
hr

in
ka

ge
 P

rio
rs

Pr
ed

ic
tio

n

Pr
io

rs
BS

1
BS

2
BS

3
BS

4
BS

5
BS

6
BS

7
BS

8
BS

9

N
,P,

 ρ
10

00
,1

0,
0.

5
20

0,
10

,0
.5

40
0,

20
,0

.5
50

0,
50

,0
.3

30
0,

10
,0

.5
10

0,
10

,0
.5

10
0,

13
0,

0.
5

10
00

,1
0,

0
10

00
,1

0,
0

β
(1

0,
10

,1
0,

10
,5

,5
,0

.1
,

0.
1,

0.
1,

0.
1)

’
(1

0,
10

,1
0,

10
,5

,5
,0

.1
,

0.
1,

0.
1,

0.
1)

’

(
1
0
,…

,1
0

⏟
⏞⏞⏟

⏞⏞⏟
5

,5
,…

,5
⏟
⏟

⏟
5

,0
.1
,…

,0
.1

⏟
⏞⏞⏟

⏞⏞⏟
1
0

)
40

%
 n

on
-z

er
o 
β

(1
,1

.5
,-2

,2
.5

,0
,0

,0
,0

,0
,0

)’
(5

,5
,3

,0
.7

4,
-

0.
9,

0,
0,

0,
0,

0)
’

(
5
,…

,5
⏟
⏟

⏟

3
0

,0
,…

,5
⏟
⏟

⏟

1
0
0

)
β=

(3
.5

,0
.2

,0
.1

,1
,2

,3
,5

,5
,5

,5
)

β=
(3

.5
,3

.5
,3

.5
,3

.5
,5

,5
,

0.
1,

0.
1,

0.
1,

0.
1)

A
cc

ur
ac

y

H
or

se
sh

oe
0.

96
8(

0.
01

2)
0.

95
8(

0.
03

1)
0.

96
5(

0.
02

1)
0.

85
6(

0.
03

2)
0.

84
3(

0.
04

8)
0.

89
4(

0.
07

4)
0.

95
4(

0.
05

3)
0.

90
9(

0.
01

8)
0.

89
9(

0.
02

4)

D
iri

ch
le

t L
ap

la
ce

0.
96

8(
0.

01
2)

0.
95

8(
0.

03
0)

0.
96

5(
0.

02
0)

0.
83

9(
0.

03
9)

0.
84

2(
0.

05
0)

0.
89

4(
0.

07
5)

0.
93

8(
0.

06
2)

0.
91

1(
0.

01
8)

0.
89

8(
0.

02
4)

D
ou

bl
e 

Pa
re

to
0.

96
8(

0.
01

2)
0.

95
8(

0.
03

1)
0.

96
4(

0.
02

1)
0.

83
4(

0.
04

0)
0.

83
9(

0.
05

0)
0.

89
4(

0.
07

3)
0.

94
0(

0.
05

0)
0.

91
2(

0.
01

8)
0.

89
8(

0.
02

4)

Se
ns

iti
vi

ty

H
or

se
sh

oe
0.

96
7(

0.
01

6)
0.

96
5(

0.
04

3)
0.

96
4(

0.
03

1)
0.

85
3(

0.
04

7)
0.

84
0(

0.
06

7)
0.

89
7(

0.
10

7)
0.

94
0(

0.
07

6)
0.

90
9(

0.
02

7)
0.

91
4(

0.
03

0)

D
iri

ch
le

t L
ap

la
ce

0.
96

7(
0.

01
6)

0.
96

4(
0.

04
3)

0.
96

4(
0.

03
1)

0.
84

0(
0.

05
3)

0.
83

7(
0.

06
8)

0.
89

8(
0.

10
6)

0.
94

4(
0.

07
3)

0.
91

0(
0.

02
8)

0.
91

4(
0.

03
0)

D
ou

bl
e 

Pa
re

to
0.

96
7(

0.
01

6)
0.

96
4(

0.
04

4)
0.

96
4(

0.
03

0)
0.

83
5(

0.
05

5)
0.

83
5(

0.
06

7)
0.

89
8(

0.
10

5)
0.

94
6(

0.
07

3)
0.

91
2(

0.
02

8)
0.

92
2(

0.
02

9)

Sp
ec

ifi
ci

ty

H
or

se
sh

oe
0.

96
9(

0.
01

7)
0.

95
3(

0.
04

6)
0.

96
6(

0.
03

1)
0.

85
9(

0.
05

2)
0.

84
7(

0.
07

0)
0.

89
3(

0.
09

4)
0.

94
3(

0.
08

4)
0.

91
0(

0.
02

7)
0.

87
7(

0.
03

8)

D
iri

ch
le

t L
ap

la
ce

0.
96

9(
0.

01
7)

0.
95

5(
0.

04
6)

0.
96

7(
0.

02
8)

0.
83

8(
0.

05
8)

0.
84

7(
0.

07
0)

0.
89

0(
0.

09
7)

0.
93

5(
0.

07
9)

0.
91

1(
0.

02
6)

0.
87

5(
0.

03
9)

D
ou

bl
e 

Pa
re

to
0.

96
9(

0.
01

7)
0.

95
4(

0.
04

5)
0.

96
4(

0.
03

0)
0.

83
3(

0.
05

8)
0.

84
7(

0.
07

0)
0.

89
3(

0.
09

4)
0.

93
4(

0.
07

9)
0.

91
2(

0.
02

7)
0.

86
3(

0.
04

1)

A
re

a 
U

nd
er

 C
ur

ve

H
or

se
sh

oe
0.

96
8(

0.
01

2)
0.

95
8(

0.
03

1)
0.

96
5(

0.
02

1)
0.

85
6(

0.
03

2)
0.

84
4(

0.
04

9)
0.

89
8(

0.
07

4)
0.

94
4(

0.
05

2)
0.

91
0(

0.
01

8)
0.

89
6(

0.
02

5)

D
iri

ch
le

t L
ap

la
ce

0.
96

8(
0.

01
2)

0.
95

8(
0.

02
9)

0.
96

6(
0.

02
0)

0.
83

9(
0.

03
9)

0.
84

2(
0.

05
0)

0.
89

7(
0.

07
5)

0.
93

9(
0.

06
3)

0.
91

1(
0.

01
8)

0.
89

5(
0.

02
5)

D
ou

bl
e 

Pa
re

to
0.

96
8(

0.
01

2)
0.

95
8(

0.
03

0)
0.

96
4(

0.
02

1)
0.

83
4(

0.
04

0)
0.

84
9(

0.
05

0)
0.

89
7(

0.
07

3)
0.

94
1(

0.
05

1)
0.

91
2(

0.
01

8)
0.

89
7(

0.
02

4)

Br
ie

r S
co

re

H
or

se
sh

oe
0.

02
3(

0.
00

7)
0.

03
0(

0.
01

8)
0.

02
5(

0.
01

3)
0.

10
3(

0.
01

9)
0.

11
0(

0.
02

6)
0.

07
3(

0.
04

2)
0.

04
6(

0.
02

6)
0.

06
7(

0.
00

9)
0.

07
2(

0.
01

2)

D
iri

ch
le

t L
ap

la
ce

0.
02

3(
0.

00
7)

0.
02

9(
0.

01
6)

0.
02

5(
0.

01
1)

0.
11

4(
0.

02
2)

0.
11

1(
0.

02
6)

0.
07

3(
0.

04
1)

0.
04

4(
0.

02
6)

0.
06

6(
0.

00
9)

0.
07

2(
0.

01
2)

D
ou

bl
e 

Pa
re

to
0.

02
3(

0.
00

7)
0.

03
0(

0.
01

7)
0.

02
5(

0.
01

2)
0.

11
7(

0.
02

3)
0.

11
2(

0.
02

6)
0.

07
3(

0.
04

3)
0.

04
5(

0.
02

4)
0.

06
3(

0.
01

0)
0.

07
2(

0.
01

2)

Va
ria

bl
e 

Se
le

ct
io

n

A
cc

ur
ac

y

H
or

se
sh

oe
0.

98
9(

0.
03

5)
0.

92
3(

0.
07

2)
0.

92
2(

0.
05

3)
0.

99
9(

0.
00

4)
0.

98
0(

0.
04

3)
0.

82
7(

0.
06

6)
0.

42
2(

0.
26

2)
0.

74
7(

0.
05

6)
0.

86
8(

0.
08

5)

D
iri

ch
le

t L
ap

la
ce

0.
99

4(
0.

02
4)

0.
92

0(
0.

07
0)

0.
91

4(
0.

04
9)

0.
97

2(
0.

02
4)

0.
98

1(
0.

04
4)

0.
82

9(
0.

06
4)

0.
50

4(
0.

27
5)

0.
75

8(
0.

06
2)

0.
85

6(
0.

10
7)

D
ou

bl
e 

Pa
re

to
0.

98
5(

0.
03

9)
0.

92
7(

0.
07

1)
0.

92
6(

0.
05

2)
0.

94
7(

0.
03

4)
0.

97
7(

0.
04

7)
0.

83
2(

.0
71

)
0.

52
7(

0.
27

4)
0.

82
0(

0.
06

5)
0.

94
0(

0.
07

8)

Se
ns

iti
vi

ty

H
or

se
sh

oe
1.

00
0(

0.
00

0)
0.

88
5(

0.
11

3)
0.

86
0(

0.
09

6)
0.

99
8(

0.
02

5)
0.

96
2(

0.
09

0)
0.

66
2(

0.
12

3)
0.

16
3(

0.
09

4)
0.

68
9(

0.
07

2)
0.

82
0(

0.
10

0)

D
iri

ch
le

t L
ap

la
ce

1.
00

0(
0.

00
0)

0.
86

8(
0.

11
4)

0.
83

8(
0.

09
3)

0.
99

8(
0.

02
5)

0.
97

8(
0.

07
2)

0.
66

8(
0.

11
4)

0.
13

6(
0.

09
6)

0.
70

4(
0.

07
9)

0.
84

8(
0.

10
6)

D
ou

bl
e 

Pa
re

to
1.

00
0(

0.
00

0)
0.

88
2(

0.
11

2)
0.

86
4(

0.
09

6)
1.

00
0(

0.
00

0)
0.

97
8(

0.
07

2)
0.

68
2(

0.
12

1)
0.

12
9(

0.
09

6)
0.

78
5(

0.
07

6)
0.

97
8(

0.
05

6)

Sp
ec

ifi
ci

ty

H
or

se
sh

oe
0.

97
2(

0.
08

6)
0.

98
0(

0.
06

8)
0.

98
5(

0.
03

9)
0.

99
9(

0.
00

4)
0.

99
2(

0.
03

7)
0.

99
2(

0.
03

9)
0.

99
9(

0.
00

4)
0.

98
0(

0.
09

8)
0.

94
0(

0.
11

3)

D
iri

ch
le

t L
ap

la
ce

0.
98

5(
0.

06
0)

0.
99

8(
0.

02
5)

0.
98

9(
0.

03
1)

0.
96

9(
0.

02
6)

0.
98

3(
0.

05
8)

0.
99

0(
0.

04
4)

0.
99

9(
0.

00
3)

0.
97

5(
0.

11
0)

0.
86

8(
0.

16
5)

D
ou

bl
e 

Pa
re

to
0.

96
2(

0.
09

6)
0.

99
5(

0.
03

5)
0.

98
8(

0.
03

3)
0.

94
2(

0.
03

7)
0.

97
7(

0.
05

0)
0.

98
2(

0.
05

8)
0.

99
9(

0.
00

2)
0.

96
0(

0.
13

6)
0.

88
2(

0.
16

5)

L1
 e

rr
or



Page 8 of 19Bhattacharyya et al. BMC Medical Research Methodology          (2022) 22:126 

Ta
bl

e 
1 

(c
on

tin
ue

d)

H
or

se
sh

oe
2.

35
8(

0.
41

7)
3.

44
4(

3.
89

5)
2.

15
2(

1.
19

4)
0.

05
7(

0.
01

7)
0.

19
7(

0.
06

4)
1.

31
1(

1.
77

6)
1.

97
7(

0.
22

9)
1.

99
8(

0.
10

9)
1.

69
6(

0.
05

3)

D
iri

ch
le

t L
ap

la
ce

2.
47

4(
0.

32
6)

2.
95

3(
0.

38
8)

2.
14

8(
0.

32
9)

0.
18

7(
0.

04
5)

0.
21

3(
0.

07
3)

0.
64

4(
0.

28
9)

1.
95

5(
0.

22
0)

1.
97

0(
0.

06
8)

1.
68

9(
0.

05
5)

D
ou

bl
e 

Pa
re

to
2.

42
1(

0.
38

7)
2.

66
9(

0.
60

1)
1.

99
7(

0.
43

8)
0.

23
0(

0.
05

3)
0.

23
1(

0.
07

6)
0.

93
8(

0.
72

0)
1.

96
0(

0.
23

7)
1.

66
9(

0.
07

7)
1.

47
9(

0.
08

9)

L2
 e

rr
or

H
or

se
sh

oe
3.

06
3(

0.
57

2)
4.

43
5(

4.
93

1)
2.

97
1(

1.
72

2)
0.

10
2(

0.
03

6)
0.

25
9(

0.
09

1)
1.

94
2(

2.
79

7)
2.

56
2(

0.
29

9)
2.

38
4(

0.
12

8)
2.

12
8(

0.
06

0)

D
iri

ch
le

t L
ap

la
ce

3.
23

1(
0.

44
6)

3.
84

9(
0.

50
7)

3.
01

5(
0.

58
5)

0.
27

7(
0.

08
1)

0.
27

6(
0.

10
3)

0.
89

6(
0.

45
6)

2.
58

2(
0.

29
3)

2.
34

9(
0.

07
5)

2.
11

8(
0.

06
3)

D
ou

bl
e 

Pa
re

to
3.

14
6(

0.
52

9)
3.

46
9(

0.
77

2)
2.

78
1(

0.
45

9)
0.

33
0(

0.
09

2)
0.

29
3(

0.
10

6)
1.

35
9(

1.
17

6)
2.

59
4(

0.
33

3)
1.

98
0(

0.
08

8)
1.

85
5(

0.
10

2)



Page 9 of 19Bhattacharyya et al. BMC Medical Research Methodology          (2022) 22:126 	

Ta
bl

e 
2 

Pr
ed

ic
tio

n 
Pe

rf
or

m
an

ce
 &

 V
ar

ia
bl

e 
Se

le
ct

io
n 

fo
r M

LR
 w

ith
 S

hr
in

ka
ge

 P
rio

rs

Pr
ed

ic
tio

n

Pr
io

rs
M

S1
M

S2
M

S3
M

S4
M

S5
M

S6
M

S7

N
,P,

J,m
40

0,
4,

 3
, (

-2
,-1

,0
,1

,2
)’

25
0,

4,
3,

(-2
,-1

,0
,1

,2
)’

40
0,

10
, 3

,0
10

00
,3

0,
 3

,0
50

0,
50

, 3
,0

60
0,

20
, 5

,0
30

0,
40

0,
 3

,0

β
(β

1,β
2,β

3)
′ ,β

1=
(−

1.
3,

1.
2,

0,
0,

2)
′ ,β

2=
(2

,−
1.

5,
0,

0)
′ ,β

3=
0

β 1
=

(−
1.

3,
1.

2,
0,

0,
2)

′ ,β
2

=
(2

,−
1.

5,
0,

0)
′ ,β

3=
0

β 1
 =

 β
2 =

 (-
1.

3,
-1

.2
,-

0.
5,

-0
.5

,2
,0

,0
,0

,0
,0

)’, 
β 3
=

0

β 1
=

(A
7,B

13
,C

7,D
3)
′ ,A

7
∼
N

(2
,0

.2
5)

,B
13
=

0,
C

7∼
N

(2
,0

.2
5)

,D
3=

0.
β

2=
(E

10
,F

7,G
13

),E
10
=

0
,F

7∼
N

(2
,0

.2
5)

,G
13
=

0

β∼
N

(0
,1

)
β 1
=

(A
7,B

13
,C

7,D
3)
′ ,A

7
∼
N

(2
,0

.2
5)

,B
13
=

0,
C

7∼
N

(2
,0

.2
5)

,D
3=

0,
β

2=
(E

10
,F

7,G
13

),E
10
=

0
,F

7∼
N

(2
,0

.2
5)

,G
13
=

0

β
=

   

N
(0
,1
),
..
.,
N
(0
,1
)

�
�
�

�

3
0

,0
,.
..
,0

�
�
�

�

1
7
0

,

N
(0
,1
),
..
.,
N
(0
,1
)

�
�
�

�

3
0

,0
,.
..
,0

�
�
�

�

1
7
0

   

A
cc

ur
ac

y

H
or

se
sh

oe
0.

81
2(

0.
04

8)
0.

81
2(

0.
04

7)
0.

71
2(

0.
07

8)
0.

87
3(

0.
02

2)
0.

81
6(

0.
04

4)
0.

76
0(

0.
03

4)
0.

57
6(

0.
07

1)

D
iri

ch
le

t L
ap

la
ce

0.
81

1(
0.

04
8)

0.
81

1(
0.

05
0)

0.
72

2(
0.

05
0)

0.
87

5(
0.

02
3)

0.
81

8(
0.

04
3)

0.
75

9(
0.

03
4)

0.
60

2(
0.

06
8)

D
ou

bl
e 

Pa
re

to
0.

81
3(

0.
04

8)
0.

81
2(

0.
04

6)
0.

71
3(

0.
07

8)
0.

87
3(

0.
02

1)
0.

81
6(

0.
04

4)
0.

76
0(

0.
03

4)
0.

58
3(

0.
06

9)

M
is

s-
cl

as
si

fic
at

io
n 

Er
ro

r

H
or

se
sh

oe
0.

18
8(

0.
04

8)
0.

18
8(

0.
04

7)
0.

28
2(

0.
05

2)
0.

12
7(

0.
02

2)
0.

18
4(

0.
04

4)
0.

24
0(

0.
03

4)
0.

42
4(

0.
07

1)

D
iri

ch
le

t L
ap

la
ce

0.
18

9(
0.

04
8)

0.
18

9(
0.

05
0)

0.
27

8(
0.

05
0)

0.
12

5(
0.

02
3)

0.
18

2(
0.

04
3)

0.
24

1(
0.

03
4)

0.
39

8(
0.

06
8)

D
ou

bl
e 

Pa
re

to
0.

18
7(

0.
04

8)
0.

18
8(

0.
04

6)
0.

28
1(

0.
05

2)
0.

12
7(

0.
02

1)
0.

18
4(

0.
04

4)
0.

24
0(

0.
03

4)
0.

41
7(

0.
06

9)

C
-E

nt
ro

py

H
or

se
sh

oe
0.

48
7(

0.
07

1)
0.

49
1(

0.
06

9)
0.

67
0(

0.
07

3)
0.

32
7(

0.
03

1)
0.

43
2(

0.
07

2)
0.

63
2(

0.
06

0)
1.

55
7(

0.
30

8)

D
iri

ch
le

t L
ap

la
ce

0.
48

0(
0.

08
9)

0.
48

8(
0.

09
7)

0.
66

5(
0.

10
0)

0.
31

3(
0.

05
6)

0.
62

0(
0.

17
7)

0.
67

7(
0.

10
1)

4.
11

3(
0.

96
9)

D
ou

bl
e 

Pa
re

to
0.

48
8(

0.
07

0)
0.

49
2(

0.
06

9)
0.

67
1(

0.
07

2)
0.

33
0(

0.
03

0)
0.

43
0(

0.
07

3)
0.

63
4(

0.
05

9)
1.

96
3(

0.
42

4)

AU
C

​

H
or

se
sh

oe
0.

71
9(

0.
06

0)
0.

73
1(

0.
06

5)
0.

71
0(

0.
04

7)
0.

87
7(

0.
02

9)
0.

82
4(

0.
05

0)
0.

77
1(

0.
03

0)
0.

63
2(

0.
06

6)

D
iri

ch
le

t L
ap

la
ce

0.
70

8(
0.

05
9)

0.
71

3(
0.

07
2)

0.
71

6(
0.

04
7)

0.
88

4(
0.

02
6)

0.
82

7(
0.

04
8)

0.
76

7(
0.

03
9)

0.
65

4(
0.

06
2)

D
ou

bl
e 

Pa
re

to
0.

72
0(

0.
05

9)
0.

73
0(

0.
06

4)
0.

71
3(

0.
04

8)
0.

87
7(

0.
02

8)
0.

82
5(

0.
04

8)
0.

77
3(

0.
03

1)
0.

63
6(

0.
06

5)

Va
ria

bl
e 

Se
le

ct
io

n

A
cc

ur
ac

y

H
or

se
sh

oe
0.

99
6(

0.
02

1)
0.

97
0(

0.
05

7)
0.

90
1(

0.
04

0)
0.

98
6(

0.
01

5)
0.

77
6(

0.
03

3)
0.

75
4(

0.
03

9)
0.

85
0(

0.
07

1)

D
iri

ch
le

t L
ap

la
ce

0.
96

9(
0.

06
0)

0.
93

4(
0.

09
1)

0.
92

9(
0.

05
5)

0.
95

4(
0.

02
6)

0.
81

2(
0.

03
9)

0.
78

9(
0.

04
8)

0.
88

0(
0.

00
6)

D
ou

bl
e 

Pa
re

to
0.

99
2(

0.
03

0)
0.

97
6(

0.
05

2)
0.

90
3(

0.
03

6)
0.

98
6(

0.
01

4)
0.

77
6(

0.
03

4)
0.

74
9(

0.
03

9)
0.

86
8(

0.
00

4)

Se
ns

iti
vi

ty

H
or

se
sh

oe
0.

99
8(

0.
02

5)
0.

95
0(

0.
10

1)
0.

83
8(

0.
05

6)
1.

00
0(

0.
00

0)
0.

67
5(

0.
04

5)
0.

65
9(

0.
05

7)
0.

05
2(

0.
02

1)

D
iri

ch
le

t L
ap

la
ce

0.
97

0(
0.

08
2)

0.
92

0(
0.

13
2)

0.
93

6(
0.

06
9)

1.
00

0(
0.

00
0)

0.
84

9(
0.

04
6)

0.
77

9(
0.

06
2)

0.
23

7(
0.

03
3)

D
ou

bl
e 

Pa
re

to
0.

99
8(

0.
02

5)
0.

96
5(

0.
08

7)
0.

83
8(

0.
05

3)
1.

00
0(

0.
00

0)
0.

67
7(

0.
04

7)
0.

65
1(

0.
05

5)
0.

12
2(

0.
02

6)

Sp
ec

ifi
ci

ty

H
or

se
sh

oe
0.

99
5(

0.
03

5)
0.

99
0(

0.
04

9)
0.

96
4(

0.
05

6)
0.

97
8(

0.
02

4)
0.

92
0(

0.
03

6)
0.

87
5(

0.
05

1)
0.

00
0(

0.
00

0)

D
iri

ch
le

t L
ap

la
ce

0.
96

8(
0.

08
4)

0.
94

8(
0.

12
5)

0.
92

2(
0.

08
9)

0.
92

9(
0.

04
0)

0.
75

9(
0.

06
3)

0.
80

3(
0.

07
5)

0.
99

3(
0.

00
4)

D
ou

bl
e 

Pa
re

to
0.

98
8(

0.
05

5)
0.

98
8(

0.
05

5)
0.

96
8(

0.
05

3)
0.

97
9(

0.
02

2)
0.

91
9(

0.
04

0)
0.

87
5(

0.
04

9)
0.

99
9(

0.
00

2)

L1
 e

rr
or



Page 10 of 19Bhattacharyya et al. BMC Medical Research Methodology          (2022) 22:126 

Ta
bl

e 
2 

(c
on

tin
ue

d)

H
or

se
sh

oe
0.

25
5(

0.
03

5)
0.

29
4(

0.
03

8)
0.

27
5(

0.
02

4)
0.

40
4(

0.
01

2)
0.

33
5(

0.
01

3)
0.

32
3(

0.
01

9)
0.

00
6(

0.
00

6)

D
iri

ch
le

t L
ap

la
ce

0.
21

5(
0.

07
7)

0.
29

3(
0.

11
3)

0.
20

6(
0.

06
0)

0.
24

6(
0.

04
7)

0.
55

0(
0.

03
5)

0.
36

6(
0.

05
5)

0.
02

4(
0.

02
4)

D
ou

bl
e 

Pa
re

to
0.

26
0(

0.
03

5)
0.

29
5(

0.
03

7)
0.

28
1(

0.
02

4)
0.

41
4(

0.
01

2)
0.

32
8(

0.
01

4)
0.

33
2(

0.
01

8)
0.

01
1(

0.
01

1)

L2
 e

rr
or

H
or

se
sh

oe
0.

31
3(

0.
03

5)
0.

35
8(

0.
03

7)
0.

35
4(

0.
02

3)
0.

58
2(

0.
00

9)
0.

43
0(

0.
01

3)
0.

40
9(

0.
01

8)
0.

00
7(

0.
00

7)

D
iri

ch
le

t L
ap

la
ce

0.
27

0(
0.

10
5)

0.
36

6(
0.

14
9)

0.
25

6(
0.

07
2)

0.
31

3(
0.

06
4)

0.
68

7(
0.

04
4)

0.
46

4(
0.

06
7)

0.
02

5(
0.

02
5)

D
ou

bl
e 

Pa
re

to
0.

32
2(

0.
03

5)
0.

36
3(

0.
03

7)
0.

36
4(

0.
02

5)
0.

60
1(

0.
01

0)
0.

41
9(

0.
01

5)
0.

42
0(

0.
01

7)
0.

01
3(

0.
01

3)



Page 11 of 19Bhattacharyya et al. BMC Medical Research Methodology          (2022) 22:126 	

explored that included the same four demographic vari-
ables along with four binary variables ∼Ber(1,0.2). These 
proxied SNP variables- (sn1,sn2,sn3,sn4)–that arise in 
genomics applications. Interactions between (sn3,weight), 
and (sn3,age) were considered. Shrinkage was applied to all 
the main effects of SNPs and the interactions.

The primary takeaway from the results in the tables is 
that performance metrics reach increasingly higher levels 
with higher N/P ratio and higher magnitude of the coef-
ficients. In Table 1, for LR, a large part of these numeri-
cal measures lie in the range of 0.8-0.9 and the trend also 
continues in the simulation settings with differential 
shrinkage and interaction coefficients (BS8 and BS9). 
Most of the non-zero interaction coefficients in these set-
tings were correctly identified. Higher correlation among 
the variables, as in BS5, and higher percentage of zero β′s 
(BS6) does drop the performance to some extent. Overall, 
the proposed method does markedly better on specific-
ity than sensitivity. Even in the p>n scenario, most of our 
performance metrics stayed above 0.8 for both prediction 
and variable selection. In Table 2, for MLR, larger sample 

size, as before drives better performance. Both large N 
and large P (MS7), although performing well in variable 
selection, has the worst predictive performance of all. We 
intend to explore such settings in more depth in future 
work with novel shrinkage methods specially geared 
towards such settings. Overall, performance scores in the 
range of 0.85-0.9 or above dominate the results in vari-
able selection. The predictive performance, in contrast, 
is moderate compared to the counterpart in Table 1 for 
LR, though the prediction accuracies remain above 0.8 in 
4 out of the 7 simulation settings. It is seen that a larger 
number of classes, as in MS6 (5 classes), push down the 
predictive measures to the range of 0.7-0.8. Lastly, the 
performances are very similar across all three priors for 
variable selection as well as prediction, so the method is 
robust to prior choices.

Data application
The method is validated by applying it to standard data 
examples. For all case studies, MCMC burn-in size is 
6000, and no. of MCMC iterations is 10000. The training 

Fig. 1  (a) Variable Selection and (b) Prediction Performance in LR with Shrinkage Priors across Simulation Scenarios
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and test set size is of ratio 80/20. All data descriptions are 
in Table 3.

Pima indians diabetes
The data has been analyzed in the literature related to 
shrinkage priors, including [44–46]. The three priors 
can detect four variables by 95% credible intervals. The 
credible intervals of the coefficients with variable names 
“pregnant,” “glucose,” “mass (BMI),” and “pedigree (family 
history)” do not include zero; hence they are significant. 
These results are at par with [44]; the “pressure” variable 
is also determined as significant by DP prior. These three 
priors are also compared with Bayesian-Lasso(BLasso) 
[44], Bayesian-Elastic-Net(BElastic) [47] and frequentist 
methods such as Lasso, Elastic-Net and Ridge. Here, the 
three priors’ accuracy is similar, but BS is the least among 
all methods. Even though EN and Ridge have high accu-
racy, the frequentist methods have substantially high BS 
and low specificity values.

Colon
This data comprises of gene expression levels for 40 
tumors and 22 normal colon tissues measured for 6500 
human genes using the Affymetrix oligonucleotide arrays 
[48]. Samples are obtained from tumor tissue and adja-
cent unaffected parts of the colon of the same patients 
[49]. Out of these, 2000 genes with the highest mini-
mal intensity across the tissues were selected for classi-
fication purposes [48]. In the public domain, there is no 

demographic information available for the two groups 
such as race, age, sex distribution; else, a study could have 
been conducted about the benefits of inclusion of one or 
all these covariates in prediction. Lasso selects 12 genes. 
The priors are applied to the data with the lasso estimates 
as the initial values. Here, an approach of k-means similar 
to [18] with prostate cancer data set is adopted. The |βi| 
are clustered by K-means algorithm at each MCMC itera-
tion into two clusters. For each iteration, the number of 
non-zero β’s is then estimated by the smaller cluster size 
out of the two clusters. A final estimate (F) of the number 
of non-zero signals is obtained by taking the highest fre-
quency over all the MCMC iterations. The F-number of 
gene IDs are traced back for each iteration and the first 
F genes with the highest frequency are chosen. In the 
case of Horseshoe prior, it selects 36 genes with the high-
est frequencies, among which one gene (gene ID: 1423) 
is included among the top 20 genes selected by the t-test 
and fold change [50]. Also, the gene ID: 1325 selected by 
Lasso [51] can be seen in the set of 36 genes selected by 
Horseshoe. DL prior selects 164 genes, of which gene ID: 
138 is included in the top 2 genes. DP selects 67 genes, 
out of which eight genes are in the set of genes selected 
by Horseshoe.The MCMC Gibbs sampling mixing and 
convergence were determined by trace plots and auto-
correlation plots with an average adequate sample size 
of 23095.21 for Horseshoe, 39755.4 for DL, and 40129.35 
for DP. About 95% of the genes conform to the Geweke 
diagnostic criteria for all three priors. A thinning step at 

Fig. 2  (a) Variable Selection and (b) Prediction Performance in MLR with Shrinkage Priors across Simulation Scenarios
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every 15 steps of iteration did not significantly improve 
the results, so a posterior prediction analysis was per-
formed on 40,000 iterations after burn-in. The MSE for 
HS, DL, and DP are 0.001,0.003,0.003, implying that 
MCMC has converged well. Here, on the basis of Brier 
score Horseshoe prior performs better than the other 
priors.

ADNI
Alzheimer’s disease (AD) is a critical public health con-
cern throughout the world and one of the most wide-
spread neurodegenerative disorder [52]. AD is an 
irreparable brain disease, which impairs thinking and 
memory. Several machine learning methods have helped 
predict AD from Mild Cognitive Impairment (MCI); 
here, the shrinkage priors are used to predict AD from 
MCI, and they achieve high prediction measures.

This dataset is obtained from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). 
The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, 
MD. The main mission was to test if the combination of 

serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be used 
to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

The data used here is obtained from the R package 
ADNIMERGE [42] which is a subset of the “adnimerge” 
data that contains only baseline variable measurements 
(i.e., the first visit for each participant) that has a diag-
nosis. The “adnimerge” datas et merges several key vari-
ables from various case report forms and biomarker 
lab from all ADNI protocols (ADNI1, ADNIGO, and 
ADNI2). The integrated data consists of 113 variables 
and 14712 observations, which include multiple observa-
tions per participant, representing multiple visits to the 
study’s site for participant evaluation The participants 
is divided into five different classes, namely, Cognitively 
Normal (CN =4428), Early Mild Cognitive Impairment 
(EMCI =2687), Late Mild Cognitive Impairment (LMCI 
=4993), Subjective Memory Complaint (SMC =938), 
and Alzheimer’s Disease (AD =1654). After pre-pro-
cessing, there were 911 observations, and 23 variables 

Fig. 3  Circular Bar Chart comparing Prediction Metrics among data sets
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including the outcome variable. The demographic, cog-
nitive assessment and clinical assessment attributes that 
are included in the analysis are described in [53]. The 
missing values are discarded, and the data is normalized. 
The three priors, along with Bayesian lasso and Bayesian 
EN, are used to predict AD from MCI that comprised of 
both early and late stages. The three priors achieve 85% 
accuracy and 93.5% specificity for the prediction of AD 
from the MCI stage and have comparable results with 
other shrinkage priors. The results also indicate that the 
most distinguishing attribute for the prediction of AD 
includes the ADAS13.bl (13 item AD Cognitive Scale 
score), RAVLT.perc.forgetting.bl (Rey’s Auditory Verbal 
Learning Test (scores for immediate response learning, 
forgetting and percentage forgetting)) by all three priors. 

FAQ.bl (Functional Activities Questionnaire) cognitive 
test was selected only by DP prior.

OASIS
This data set consists of a longitudinal collection of 
Non-demented and Demented Older Adults, 150 sub-
jects aged 60 to 96. The three priors’ most frequently 
included variables are Age, SES, MMSE, gender, ASF, 
and nWBV. The three priors’ prediction efficiency 
shows that they outperform other methods concern-
ing BS and specificity. Table  4, and the circular bar 
chart Fig. 3 gives a detailed view of the prediction per-
formance of LR model. Figure 3 is efficient in describ-
ing the comparison of all the four data sets in a single 
platform. For each data set, eight bars correspond to 

Fig. 4  ROC Surface Plot for Shrinkage priors in ADNI data
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the eight shrinkage methods, and each stacked bar 
consists of the five measures of prediction. For ADNI 
and PIMA, all methods perform similarly, though the 
priors do not prove to be efficient in the high-dimen-
sional Colon data. For the MLR model, in ADNI data, 
the three classes are considered as EMCI, LMCI, and 
AD, and collected data for these classes had a dimen-
sion of 1438×113. A 10- fold cross-validation was 
used for prediction analysis. The variables selected by 
the priors are “CDRSB.bl,” “MMSE.bl,” “WholeBrain.
bl”, “Fusiform.bl”, and “ICV,” which are real-life mark-
ers for AD prediction and are validated by previous 
literature. The five-category model did not have a high 
performance in terms of accuracy. DL and DP provide 
better metrics than Horseshoe here. For OASIS data, 
the categorical response variable is classified into three 
classes. The moderate (1) and mild CDR (2) ratings 
are combined since there were only four observations 
for the moderate class. The variables selected are Age, 
Education, Socio Economic Status (SES), Mini-Men-
tal State Exam (MMSE), and normalized Whole Brain 
Volume (nWBV)”. Accuracy and AUC are presented in 

parentheses for the three priors in Table 4. Figure 4 is 
prepared by the R packages HUM [54], and plotly [55] 
that provides details about the behavior of the shrink-
age priors. The ROC surface for horseshoe prior is pre-
sented here; all the other priors follow similarly.

The convergence metrics, trace plots, and acf plots for 
all data sets to assess the sampling procedure are pre-
sented in the supplementary file. The Geweke diagnostic 
(Z) is calculated that compares the mean of the samples 
drawn from the end of a chain of MCMC output to the 
mean of the samples at the beginning of the chain using a 
z-test statistic. A cut-off of 2 is arbitrarily chosen for the 
absolute value of Z. The percentage of |Z|<=2 is reported 
for each of the three priors.

Overall, it is seen that on two out of four datasets, 
our proposed method with the horseshoe prior out-
performed the frequentist methods on specificity by as 
much as 10 percentage points. On the other two data-
sets, while we are behind on the specificity, we compare 
much favorably on sensitivity. The colon dataset has the 
second highest AUC from our method only superseded 
by Blasso. Overall, our method is clearly competitive and 

Table 4  Prediction Performance in Real Life Data for LR

Priors

Measures Horseshoe DL DP BLasso BElastic Lasso EN Ridge Gradient-
Boosting

Random Forest BART​

ADNI

Accuracy 0.842 (0.736) 0.831 (0.747) 0.842 (0.747) 0.907 0.852 0.907 0.907 0.902 0.918 0.923 0.907

Sensitivity 0.810 0.796 0.810 0.964 0.810 0.964 0.964 0.993 0.971 0.985 0.964

Specificity 0.935 0.935 0.935 0.739 0.978 0.739 0.739 0.630 0.761 0.739 0.739

AUC​ 0.798 (0.880) 0.789 (0.884) 0.798 (0.883) 0.851 0.894 0.894 0.894 0.928 0.866 0.862 0.851

Brier Score 0.107 0.109 0.110 0.093 0.113 0.093 0.093 0.098 0.082 0.077 0.093

OASIS

Accuracy 0.733 (0.741) 0.733 (0.688) 0.733 (0.741) 0.827 0.800 0.827 0.840 0.787 0.760 0.760 0.773

Sensitivity 0.818 0.818 0.818 1.000 0.977 1.000 1.000 1.000 0.841 0.841 0.864

Specificity 0.613 0.613 0.613 0.581 0.548 0.581 0.613 0.484 0.645 0.645 0.645

AUC​ 0.727(0.764) 0.727 (0.701) 0.727(0.764) 0.790 0.763 0.886 0.893 0.867 0.756 0.756 0.772

Brier Score 0.129 0.130 0.129 0.173 0.126 0.173 0.160 0.213 0.240 0.240 0.227

Pima Indian Diabetes

Accuracy 0.727 0.727 0.727 0.727 0.708 0.727 0.734 0.734 0.786 0.792 0.786

Sensitivity 0.705 0.705 0.705 0.867 0.667 0.867 0.876 0.895 0.864 0.893 0.874

Specificity 0.776 0.776 0.776 0.429 0.796 0.429 0.429 0.388 0.627 0.588 0.608

AUC​ 0.711 0.711 0.711 0.648 0.731 0.682 0.692 0.696 0.746 0.741 0.741

Brier Score 0.197 0.197 0.197 0.273 0.199 0.273 0.266 0.266 0.214 0.208 0.214

Colon

Accuracy 0.846 0.769 0.769 0.923 0.769 0.923 0.923 0.923 0.846 0.846 0.692

Sensitivity 1.000 0.750 0.750 1.000 1.000 1.000 1.000 1.000 0.667 0.667 0.333

Specificity 0.778 0.778 0.778 0.889 0.667 0.889 0.889 0.889 0.900 0.900 0.900

AUC​ 0.889 0.764 0.764 0.944 0.833 0.944 0.944 0.944 0.783 0.783 0.567

Brier Score 0.121 0.224 0.240 0.077 0.276 0.077 0.077 0.077 0.154 0.154 0.308
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shows superiority in at least one of the measures over the 
frequentist methods in all datasets.

Discussion
Bayesian shrinkage models can be utilized as a practical 
and useful alternative classification approach and a plausi-
ble way to select genetic markers and risk factors. This is a 
detailed study on a wide variety of settings comparing the 
three most well-known shrinkage priors. All of the three 
priors were able to recognize patterns differentiating the 
binary classes to a highly accurate level. This was shown 
by the excellent predictive performance of the binary LR 
model on the simulated data sets and fairly high predic-
tive accuracies on a wide array of public health data sets. 
Some of these datasets were high dimensional, which 
exhibits the model’s power to scale up to these challenging 
scenarios. The algorithm is efficient, and the time taken to 
execute the simulations is relatively low, such as algorithm 
with n=500;p=50 takes about 673 seconds. This combina-
tion of computational power and predictive performance 
makes it a very reasonable method of use for practitioners 
who require quick high dimensional analysis, retaining the 
advantages of Bayesian analysis. In future we would for-
mally explore the comparison with priors such as Spike and 
Slab priors and schemes ase the MH algorithm. We posit 
that features such as selections of indicators and accept-
ance-rejection step would not favorably compare with the 
proposed algorithm. We also extended the model to a mul-
tinomial logistic model that handles multiple categories. An 
R package “ShrinkageBayesGlm” is developed to be publicly 
available soon. We expect that the coming years will wit-
ness its wider dissemination among public health research 
and will be useful for predicting occurrences of common 
disorders as dementia, colon cancer, diabetes, etc. Compu-
tational advances, especially in high-dimensional cases [56] 
will continue expanding the scope of exact methods.
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